dAMUSE - A new tool for denoising and blind source separation

نویسندگان

  • Ana Maria Tomé
  • Ana R. Teixeira
  • Elmar Wolfgang Lang
  • Kurt Stadlthanner
  • Ana Paula Rocha
  • Rute Almeida
چکیده

In this work a generalized version of AMUSE, called dAMUSE is proposed. The main modification consists in embedding the observed mixed signals in a high-dimensional feature space of delayed coordinates. With the embedded signals a matrix pencil is formed and its generalized eigendecomposition is computed similar to the algorithm AMUSE. We show that in this case the uncorrelated output signals are filtered versions of the unknown source signals. Further, denoising the data can be achieved conveniently in parallel with the signal separation. Numerical simulations using artificially mixed signals are presented to show the performance of the method. Further results of a heart rate variability (HRV) study are discussed showing that the output signals are related with LF (low frequency) and HF (high frequency) fluctuations. Finally, an application to separate artifacts from 2D NOESY NMR spectra and to denoise the reconstructed artefact-free spectra is presented also.  2005 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Denoising using local projective subspace methods

In this paper we present denoising algorithms for enhancing noisy signals based on Local ICA (LICA), Delayed AMUSE (dAMUSE) and Kernel PCA (KPCA). The algorithm LICA relies on applying ICA locally to clusters of signals embedded in a high dimensional feature space of delayed coordinates. The components resembling the signals can be detected by various criteria like estimators of kurtosis or the...

متن کامل

Denoising Source Separation

A new algorithmic framework called denoising source separation (DSS) is introduced. The main benefit of this framework is that it allows for easy development of new source separation algorithms which are optimised for specific problems. In this framework, source separation algorithms are constucted around denoising procedures. The resulting algorithms can range from almost blind to highly speci...

متن کامل

A New Method for Fetal Electrocardiogram Denoising Using Blind Source Separation and Empirical Mode Decomposition

1 “Politehnica” University of Bucharest, Applied Electronics and Information Engineering Department, E-mail: [email protected], rodica. [email protected]. 2 “Carol Davila” University of Medicine and Pharmacy, Obstretics and Gynecology Department, Bucharest, Romania, E-mail: ilinca. [email protected]. A NEW METHOD FOR FETAL ELECTROCARDIOGRAM DENOISING USING BLIND SOURCE SEPARATION AND EMPIRIC...

متن کامل

A Hybridization of Simulated Annealing and Local PCA for Automatic Component Assignment Within ICA

Independent component analysis (ICA) as well as blind source separation (BSS) often faces the problem of assigning the independent or uncorrelated components estimated with ICA or BSS techniques to underlying source signals, artifacts or noise contributions. In this work an automatic assignment tool is presented which uses a priori knowledge about the form of some of the signals to be extracted...

متن کامل

Blind Signal Separation Using an Extended Infomax Algorithm

The Infomax algorithm is a popular method in blind source separation problem. In this article an extension of the Infomax algorithm is proposed that is able to separate mixed signals with any sub- or super-Gaussian distributions. This ability is the results of using two different nonlinear functions and new coefficients in the learning rule. In this paper we show how we can use the distribution...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Digital Signal Processing

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2005